発表論文

2024 2023 2022 2021
2020
2019 2018 2017 2016 2015 2014 2013 2012 2011
2010 2009 2008

Author represents a (past) lab member.
Author represents a (past) lab student.

2024

  1. M. Miyamoto, R. Kobayashi, G. Kuwano, M. Tsujimoto, I. Kakeya, Wide-band frequency modulation of a terahertz intrinsic Josephson junction emitter of a cuprate superconductor, 
    Nature Photonics  18, 267–275 (2024). https://doi.org/10.1038/s41566-023-01348-0
  2. A. Elarabi, R. Kobayashi, K. Hayama, K. Maeda, S. Fujita, Y. Yoshioka, Y. Saito, Y. Takano, H. Asai, M. Tsujimoto, I. Kakeya
    Polarized terahertz electromagnetic-wave radiation from cuprate superconductor Bi2212 mesa,
    Japanese Journal of Applied Physics, 63, 020801 (2024).
    DOI 10.35848/1347-4065/ad0cdd
  3. Yasuhito Gotoh and Tomoaki Osumi,
    Proton energy suitable for backscattering spectrometry in nitrogen composition analysis of transition metal nitride thin films on silicon substrate,
    Nuclear Instruments and Methods in Physics Research B, Vol. 554, 165445 (2024).
    https://doi.org/10.1016/j.nimb.2024.165445
  4. T. Watanabe, K. Kosugi, N. Sasaki, S. Yamaguchi, T. Fujii, K. Hayama, I. Kakeya, and T. Ito,
    Effects of vortex and antivortex excitations in underdoped Bi2Sr2Ca2Cu3O10+δ bulk single crystals,
    Phys. Rev. B 110, 134509 – Published 9 October, 2024
    https://doi.org/10.1103/PhysRevB.110.134509

2023

  1. Y. Gotoh, Y. Neo, M. Nagao, and N. Sato,”Characteristics of improved tetrode configuration for radiation tolerant image sensor”, KURNS Progress Report CO4-23, p.114 (2023).
  2. Tomoaki Osumi, Ryosuke Hori, Masayoshi Nagao, Hiromasa Murata, and Yasuhito Gotoh, “Electron emission characteristics of field emitter arrays coated with over-stoichiometric hafunium nitride”, 36th International Vacuum Nanoelectronics Conference, IVNC 2023, 2023/7/10-15, Cambridge, USA. https://doi.org/10.1109/IVNC57695.2023.10189004
  3. Hitoshi Takane, Itsuhiro Kakeya, Hirokazu Izumi, Takeru Wakamatsu, Yuki Isobe, Kentaro Kaneko, Katsuhisa Tanaka,
    Low-temperature electron transport of rutile-type GexSn1−xO2,
    Journal of Applied Physics, 134 165706 (2023)
    https://doi.org/10.1063/5.0173815
  4. Itsuhiro Kakeya,
    Terahertz radiations and switching phenomena of Intrinsic Josephson Junctions in High-Temperature Superconductors: Josephson phase dynamics in long-and short-ranged interactions,
    IEICE Transactions on Electronics E-106 272-280 (2023); Open access
    DOI: 10.1587/transele.2022SEI0004

2022

  1. Y. Saito I. Kakeya, and Y. Takano,
    Polarization analysis of terahertz emission from Bi-2212 cross-whisker intrinsic Josephson junction devices and their refractive index ,
    Appl. Phys. Lett. 121, 212601 (2022); Editors’ pick  https://doi.org/10.1063/5.0123290
  2. R Kobayashi, K Hayama, I Kakeya,
    Corrigendum: “Circuit models of simultaneously biased intrinsic Josephson junction stacks for terahertz radiations in high-bias regime” [Appl. Phys. Express 15, 093002 (2022)],
    Applied Physics Express 15 119301
    DOI: 10.35848/1882-0786/ac9cb4
  3. R Kobayashi, K Hayama, I Kakeya,
    Circuit models of simultaneously biased intrinsic Josephson junction stacks for terahertz radiations in high-bias regime,
    Applied Physics Express 15, 093002 (2022)
    DOI: 10.35848/1882-0786/ac8597
  4. R Kobayashi, K Hayama, S Fujita, M Tsujimoto, I Kakeya, Spontaneous Frequency Shift and Phase Delay of Coupled Terahertz Radiation Mediated by the Josephson Plasmon in a Cuprate Superconductor, Physical Review Applied 17, 054043
    DOI: 10.1103/PhysRevApplied.17.054043

2021

  1. T. Ozaki, T. Kashihara,I. Kakeya, R. Ishigami,
    Effect of 1.5 MeV proton irradiation on superconductivity in FeSe0.5Te0.5 thin films, Quantum Beam Science, 5, 18 (2021), 10.3390/qubs5020018
  2. Yoshito Saito, Shintaro Adachi, Ryo Matsumoto, Masanori Nagao, Shuma Fujita, Ken Hayama, Kensei Terashima, Hiroyuki Takeya, Itsuhiro Kakeya, Yoshihiko Takano,
    THz emission from a Bi2Sr2CaCu2O8+ δ cross-whisker junction
    Applied Physics Express 14 033003
    DOI:10.35848/1882-0786/abe166
  3. S Komori, I Kakeya,
    Interlayer Transport and Josephson Coupling in a 1212-type Cuprate Superconductor with a (Pb, Cu)–O Barrier LayerJournal of the Physical Society of Japan 90, 024702 (2021) DOI: 10.7566/JPSJ.90.024702
  4. Tamotsu OkamotoTomoya IgariTakahiro FukuiRyuto TozawaYasuhito GotohNobuhiro SatoYasuki OkunoTomohiro KobayashiMitsuru Imaizumi and Masafumi Akiyoshi
    Gamma-ray irradiation effects on CdTe solar cell dosimeter
    Jpn. J. Appl. Phys. 60, SBBF02
    DOI: 10.35848/1347-4065/abd6d8

2020

  1. K Hayama, S Fujita, Y Kuriyama, K Maeda, M Tsujimoto, I Kakeya
    2020 International Conference on UK-China Emerging Technologies (UCET), 1-4 (Best paper award)
    DOI:10.1109/UCET51115.2020.9205454
  2. M. Tsujimoto, S. Fujita, G. Kuwano, K. Maeda, A. Elarabi, J. Hawecker, J. Tignon, J. Mangeney, S.S. Dhillon, and I. Kakeya,
    Mutually Synchronized Macroscopic Josephson Oscillations Demonstrated by Polarization Analysis of Superconducting Terahertz Emitters
    Phys. Rev. Applied 13, 051001 (Letter & Editors’ Suggestion)
    DOI: /10.1103/PhysRevApplied.13.051001
  3. Yasuhito Gotoh , Hiroshi Tsuji, Masayoshi Nagao , Tomoaki Masuzawa, Yoichiro Neo, Hidenori Mimura,  Tamotsu Okamoto, Tomoya Igari, Masafumi Akiyoshi, Nobuhiro Sato, and Ikuji Takagi
    Development of a Field Emission Image Sensor Tolerant to Gamma-Ray Irradiation,
    IEEE Transactions on Electron Devices 67, 1660-1665 (2020).
    https://doi.org/10.1109/TED.2020.2977674
  4. YJ Kim, S Konishi, Y Hayasaka, I Kakeya, K Tanaka
  5. 後藤 康仁
    電子ビーム技術に期待する
    表面と真空 63, 2 (2020)
    DOI: 10.1380/vss.63.2

Accumulated IF2019: 10.28

top of this page

2019

  1. Y Nomura, R Okamoto, T Mizuno, S Adachi, T Watanabe, M Suzuki, I Kakeya
    Role of the inner copper oxide plane in interlayer Josephson effects in multilayered cuprate superconductors
    Physical Review B 100 (14), 144515
    DOI:10.1103/PhysRevB.100.144515
  2. K Maeda, S Fujita, A Elarabi, M Tsujimoto, I Kakeya
    Stokes-parameter analysis of circular polarized terahertz waves from superconducting Josephson plasma emitter
    2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
    DOI: 10.1109/IRMMW-THz.2019.8874509
  3. I Kakeya, A Elarabi, K Maeda, S Fujita, M Tsujimoto
    Monolithic terahertz emitter of high-temperature superconductors
    2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
    DOI: 10.1109/IRMMW-THz.2019.8874440
  4. A Shinojima, I Kakeya, S Tada
    Lamina Cribrosa Pore Diameter and Spaceflight-Associated Neuro-ocular Syndrome
    JAMA ophthalmology 137 (11), 1330-1331
    doi:10.1001/jamaophthalmol.2019.3319
  5. A Shinojima, I Kakeya, S Tada
    Brain Upward Shift and Spaceflight-Associated Neuro-Ocular Syndrome—Reply
    JAMA ophthalmology 137 (5), 586-587
    doi:10.1001/jamaophthalmol.2019.0223

Accumulated IF2018: 16.07

top of this page

2018

  1. A Elarabi, Y Yoshioka, M Tsujimoto, I Kakeya,
    Circularly polarized terahertz radiation monolithically generated by cylindrical mesas of intrinsic Josephson junctions,
    Applied Physics Letters 113 (5), 052601
    DOI:/10.1063/1.5040159
  2. S Komori and I Kakeya,
    Carrier doping into a superconducting BaPb0.7Bi0.3O3−δ epitaxial film using an electric double-layer transistor structure,
    Superconductor Science and Technology, 31 065004 (2018)
    DOI:10.1088/1361-6668/aabb4c
  3. A Shinojima, I Kakeya, S Tada,
    Association of Space Flight With Problems of the Brain and Eyes, 
    JAMA ophthalmology 136 (9), 1075-1076
    DOI:10.1001/jamaophthalmol.2018.2635

Accumulated IF2017: 13.025

top of this page

2017

  1. A. Elarabi, Y. Yoshioka, M. Tsujimoto, and I. Kakeya,
    Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation,
    Phys. Rev. Applied 8, 064034 (2017)
    DOI: 10.1103/PhysRevApplied.8.064034
  2. Y. Nomura, R. Okamoto, and I. Kakeya,
    Negative correlation between enhanced crossover temperature and fluctuation-free critical current of the second switch in Bi2Sr2CaCu2O8+δ intrinsic Josephson junction,
    Supercond. Sci. Technol., 30 105001(2017).
    DOI: 10.1088/1361-6668/aa7b23
  3. M Tsujimoto, T Doi, G Kuwano, A Elarabi, and I Kakeya
    Engineering and characterization of a packaged high-T c superconducting terahertz source module
    Superconductor Science and Technology 30 (6), 064001 (2017)
    DOI:
    10.1088/1361-6668/aa67aa
  4. Y. Nomura, R. Okamoto, and I. Kakeya
    Dynamics of First and Second Switches in Bi2Sr2CaCu2O8+δ Intrinsic Josephson Junction Stacks Measured by Specifically Designed Electronics
    IEEE Transactions on Applied Superconductivity 27, 7200205, (2017)
    DOI: 10.1109/TASC.2016.2642043

Accumulated IF2016: 12.147

top of this page

2016

  1. Takao Watanabe, Tomohiro Usui, Shintaro Adachi, Yuki Teramoto, Mihaly M. Dobroka, Itsuhiro Kakeya, Akihiro Kondo, Koichi Kindo, and Shojiro Kimura
    Origin of positive out-of-plane magnetoconductivity in overdoped Bi1.6Pb0.4Sr2CaCu1.96Fe0.04O
    8+δ
    Phys. Rev. B 94, 174517 (2016)
    DOI: 10.1103/PhysRevB.94.174517
  2. S. Komori, A. Kondo, K. Kindo, and I. Kakeya
    90 K superconductivity of clean Pb1212 epitaxial films
    Superconductor Science and Technology, 29, 085007-(1-5) (2016).
    DOI:10.1088/0953-2048/29/8/085007
  3. A. Uzawa, S. Komori, Y. Kamei, and I. Kakeya
    Terahertz conductivity in the under-doped Pb1212 epitaxial film

    Physica C, 530,  14-16 (2016).
    DOI:10.1016/j.physc.2016.05.012
  4. A. Elarabi, Y. Yoshioka, M. Tsujimoto, Y. Nakagawa, and I. Kakeya
    Polarization Enhancement of Terahertz Radiation Generated by Intrinsic Josephson Junctions in a Truncated Edge Square Bi2Sr2CaCu2O8+δ Mesa 

    Physics Procedia, 81, 133-136 (2016).
    DOI:10.1016/j.phpro.2016.04.022
  5. Itsuhiro Kakeya and Huabing Wang
    Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: a review on recent progress
    Superconductor Science and Technology, 29, 073001-(1-18)  (2016).
    DOI:10.1088/0953-2048/29/7/073001
    Preprint: THzReview20160414
  6. M. Tsujimoto, I. Kakeya, T. Kashiwagi, H. Minami, and K. Kadowaki
    Cavity mode identification for coherent terahertz emission from high-Tc superconductors
    Optics Express, 24, 4591-4599 (2016).
    DOI: 10.1364/OE.24.004591
     
  7. J Mirkovic, I Kakeya, S Savel’ev, T Kashiwagi, B Markovic, K Kadowaki
    Tilted vortex lattice in irradiate Bi2Sr2CaCu2O8+δ single crystals
    Journal of Physics: Conference Series 667 (1), 012007

top of this page

2015

  1. M. Tsujimoto, Y. Maeda, H. Kambara, A. Elarabi, Y. Yoshioka, Y. Nakagawa, Y. Wen, T. Doi, H. Saito and I. Kakeya
    Terahertz emission from a stack of intrinsic Josephson junctions in Pb-doped Bi2Sr2CaCu2O8+δ
    Supercond. Sci. Technol., 28, 105015-(1-5) (2015).
    DOI: 10.1088/0953-2048/28/10/105015
  2. H Akiyama, S Pyon, T Tamegai, M Tsujimoto, I Kakeya

    Thermal imaging of Bi2212 THz oscillator,
    Physica C: Superconductivity and its Applications, 518, 77-80 (2015).
    DOI:10.1016/j.physc.2015.06.005

  3. Itsuhiro Kakeya, Nobuo Hirayama, Yuta Omukai and Minoru Suzuki
    Temperature dependence of terahertz emission by an asymmetric intrinsic Josephson junction device 
    J. Appl. Phys. 117, 043914-(1-5) (2015).
    DOI: 10.1063/1.4906849
  4. Y. Nomura, T. Mizuno, H. Kambara, Y. Nakagawa, and I. Kakeya
    Enhanced Macroscopic Quantum Tunneling in Capacitively Coupled BiPb2201 Single-Layered Intrinsic Josephson Junctions
    J. Phys. Soc. Jpn., 84 013704-(1-5) (2015).
    DOI: 10.7566/JPSJ.84.013704

top of this page

2014

  1. Sachio Komori and Itsuhiro Kakeya
    Intrinsic Josephson properties in Pb1-ySr2Y1-xCaxCu2+yO7+δ epitaxial films <class=”authorlist”>Journal of Physics: Conference Series 568 022025 (2014).
    doi:10.1088/1742-6596/568/2/022025
  2. Y Nomura, H Kambara, Y Nakagawa and I Kakeya
    Macroscopic quantum tunneling in BiPb2201 Journal of Physics: Conference Series 568 022033 (2014).
    doi:10.1088/1742-6596/568/2/022033
  3. M Tsujimoto, H Kambara, Y Maeda, Y Yoshioka, Y Nakagawa and I Kakeya
    Imaging of local temperature distributions in mesas of high-Tc superconducting terahertz sources

    Journal of Physics: Conference Series 568 022048 (2014).
    doi:10.1088/1742-6596/568/2/022048
  4. M. Tsujimoto, H. Kambara, Y. Maeda, Y. Yoshioka, Y. Nakagawa, and I. Kakeya
    Dynamic Control of Temperature Distributions in Stacks of Intrinsic Josephson Junctions in Bi2Sr2CaCu2O8+δ for Intense Terahertz Radiation
    Phys. Rev. Applied 2, 044016-(1-5)
    doi:10.1103/PhysRevApplied.2.044016
  5. S. Komori, R. Inaba, K. Kaneko, S. Fujita, I. Kakeya, and M. Suzuki
    Epitaxial growth and superconducting anisotropy of PbSr2Y1-xCaxCu2O7+δ thin films
    Phys. Rev. B 89, 174509-(1-5)
    doi:10.1103/PhysRevB.89.174509
  6. Y. Nomura, T. Mizuno, H. Kambara, Y. Nakagawa, T. Watanabe, I. Kakeya and M. Suzuki
    Systematic Enhancements of Switching Rate in Intrinsic Josephson Junctions
    J. Phys.: Conf. Ser. 507 012038 doi:10.1088/1742-6596/507/1/012038
  7. Y. Kususe, H. Murakami, K. Fujita, I. Kakeya, M. Suzuki, S. Murai, and K. Tanaka
    Magnetic and transport properties of EuTiO3 thin films doped with Nb.
    Jap. J. Appl. Phys. 53 (5S1), 05FJ07,

top of this page

2013

  1. Temperature and current dependencies of terahertz emission from stacks of intrinsic Josephson junctions with thin electrodes revealed by a high-resolution FT-IR spectrometer
    Itsuhiro Kakeya, Nobuo Hirayama, Takuto Nakagawa, Yuta Omukai, and Minoru Suzuki,
    Physica C 491 11-15 (2013), doi:10.1016/j.physc.2012.12.014
  2. Band gap and function engineering for novel functional alloy semiconductors: Bloomed as magnetic properties at room temperature with alpha-(GaFe)2O3
    Kentaro Kaneko, Itsuhiro Kakeya, Sachio Komori, and Shizuo Fujita,
    JOURNAL OF APPLIED PHYSICS 113233901   DOI: 10.1063/1.4807651
  3. Increase of superfluid density with growth of quasiparticle density of states probed by intrinsic tunneling spectroscopy in Bi1.9Pb0.1Sr2CaCu2O8+delta
    Hitoshi Kambara,  Itsuhiro Kakeya, Minoru Suzuki,
    PHYSICAL REVIEW B 87 214521-(1-5)
    DOI: 10.1103/PhysRevB.87.214521

top of this page

2012

  1. Method for Measuring Anisotropic Electrical Resistivity
    Minoru Suzuki and Hiromitsu Katsui,
    Jpn. J. Appl. Phys. 51 (2012) 123102(6 pages) , DOI: 10.1143/JJAP.51.123102
  2. Intrinsic Tunneling Spectroscopy for Pb-Substituted Bi2212 in the Underdoped Region
    Hitoshi Kambara, Itsuhiro Kakeya and Minoru Suzuki
    J. Phys.: Conf. Ser. 400 (2012) 022043 (4pp) doi:10.1088/1742-6596/400/2/022043 
  3. A model and calculation of evolving tunneling spectra for the gap and pseudogap in Bi2Sr2CaCu2O8+δ
    Minoru Suzuki, Takashi Hamatani, Kenkichi Anagawa and Takao Watanabe
    J. Phys.: Conf. Ser. 400 (2012) 022116 (4pp)
      doi:10.1088/1742-6596/400/2/022116 
  4. Simultaneous Observation of Three Types of Terahertz Radiation from Bi2Sr2CaCu2O8 + δ Intrinsic Josephson Junctions
    Yuta Omukai, Itsuhiro Kakeya and Minoru Suzuki
    J. Phys.: Conf. Ser. 400 (2012) 052027 (4pp)  doi:10.1088/1742-6596/400/5/052027 
  5. “Proximity Effect in BSCCO Intrinsic Josephson Junctions Contacted with a Normal Metal Layer”,
    Minoru Suzuki, Masayuki Koizumi, Masayuki Ohmaki, Itsuhiro Kakeya, Yu. M. Shukrinov,
    Physics Procedia 36, 205–210 (2012) 
  6. Evolution of interlayer tunneling spectra and superfluid density with doping in Bi2Sr2CaCu2O8+δ“,
    Minoru Suzuki, Takashi Hamatani, Kenkichi Anagawa, and Takao Watanabe,
    Phys. Rev. B 85, 214529 (2012) [10 pages]
  7. Effect of thermal inhomogeneity for terahertz radiation from intrinsic Josephson junction stacks of Bi2Sr2CaCu2O8+δ“,
    Itsuhiro Kakeya, Yuta Omukai, Takashi Yamamoto, Kazuo Kadowaki, and Minoru Suzuki,
    Appl. Phys. Lett. 100, 242603 (2012) (4 pages)
  8. Short-Pulse Intrinsic Tunneling Spectroscopy in Bi2Sr2CaCu2O8+δ under Suppressed Self Heating“,
    Minoru Suzuki, Ryota Takemura, Kenji Hamada, Masayuki Ohmaki, andTakao Watanabe,
    Jpn. J. Appl. Phys. 51 (2012) 010112 (9 pages)

top of this page

2011

  1. Intrinsic tunneling spectroscopy for
    Bi2-xPbxSr2CaCu2O8+δ of nm-thickness mesa structure
    “,
    Hitoshi Kambara, Itsuhiro Kakeya, Minoru Suzuki,
    PHYSICA C, 471, 54-757 (2011)
  2. Fluctuating pancake vortices revealed by dissipation of the Josephson vortex lattice“,
    A. E. Koshelev, A. I. Buzdin, I. Kakeya, T. Yamamoto, and K. Kadowaki,
    Phys. Rev. B 83, 224515 (2011)

top of this page

2010

  1. Overdoped high current density Bi2-xPbxSr2CaCu2O8+δ intrinsic Josephson junction mesas and their switching current desctributions”,
    M. Suzuki, K. Hamada, R. Takemura, M. Ohmaki, and I. Kakeya,
    Chin. Phys. Lett. 27 087406 (2010)

  2. Vortex phases in magnetic fields near ab-plane in
    Bi2Sr2CaCu2O8+δ  single crystal
     “,
    Mirković, Jovan
    ,Saito, Takashi, Kashiwagi, Takanari, Kakeya, Itsuhiro, Kubo, Yuimaru, Yamamoto, Takashi, Oral, Ahmet, Kadowaki, Kazuo, 
    PHYSICA C, 470, S790-S792 (2010)

top of this page

2009

  1. “Characteristics of terahertz radiation emitted from the intrinsic Josephson junctions in high-Tc superconductor Bi2Sr2CaCu2O8+δ
    H. Minami, I. Kakeya, H. Yamaguchi, T. Yamamoto, and K. Kadowaki
    Appl. Phys. Lett. 95, 232511 (2009)
  2. “Switching current distributions and macroscopic quantum tunneling in over-doped BSCCO mesas with nanometer thickness”
    I. Kakeya, K. Hamda, T. Tachiki, T. Watanabe, and M. Suzuki
    Superconductor Science and Technology  22 114014 (2009)
  3. “Significantly doping-dependent Josephson critical current — inhomogeneity in real space or heterogeneity in k-space”
    Minoru Suzuki, Takashi Hamatani, Yoshiharu Yamada, Kenkichi Anagawa and Takao Watanabe
    J. Phys.: Conf. Ser. 150 (2009) 052252 (4pp)
  4. “Macroscopic quantum tunneling and thermal activation in a small mesa structured Bi2Sr2CaCu2Oy intrinsic Josephson junctions”
    H Kitano, K Ota, K Hamada, R Takemura, M Ohmaki, A Maeda and M Suzuki
    J. Phys.: Conf. Ser. 150 (2009) 052110 (4pp)
  5. “Fabrication of Highly Crystalline Corundum-Structured α-(Ga1-xFex)2O3 Alloy Thin Films on Sapphire Substrates”
    Kentaro Kaneko, Taichi Nomura, Itsuhiro Kakeya, and Shizuo Fujita
    Applied Physics Express 2 075501 (2009)
  6. “Scaling behavior of the crossover to short-stack regimes of Josephson vortex lattices in Bi2Sr2CaCu2O8+δ stacks”
    I. Kakeya, Y. Kubo, M. Kohri, M. Iwase, T. Yamamoto, and K. Kadowaki
    Physical Review B 79  212503 (2009)
  7. “Comparative study of macroscopic quantum tunneling in Bi2Sr2CaCu2Oy intrinsic Josephson junctions with different device structures”
    K. Ota, K. Hamada, R. Takemura, M. Ohmaki, T. Machi, K. Tanabe, M. Suzuki, A. Maeda, and H. Kitano
    Physical Review B 79 134505 (2009)

top of this page

2008

  1. “Tunneling characteristics for nm-thick mesas consisting of a few intrinsic Josephson junctions”,
    M. Suzuki, M. Ohmaki, R. Takemura, K. Hamada, T. Watanabe, K. Ota, H. Kitano, and A. Maeda,
    J. Phys. Conf. Ser. 129  012033-1 012033-8.
  2. “Structure of the breakpoint on current-voltage characteristics of intrinsic Josephson junctions”,
    Yu. M. Shukrinov, F. Mahfouzi, and M. Suzuki,
    Phys. Rev. B 78 13 134521-1 134521-5
  3. “SIN feature observed in intrinsic Josephson junction characteristics for overdoped Bi2Sr2CaCu2O8+d”
    M. Suzuki, Y. Takemura, M. Ohmaki, and K. Anagawa
    J. Phys. Conf. Ser. 97  012260-1 012260-6.
  4. “Growth of c-axis epitaxial thin films with reduced intergrowths for the bilayer manganate La2-2xSr1+2xMn2O7 using a new sputtering configuration”,
    M. Lmouchter, R. Tatsumi, T. Ikawa, and M. Suzuki,
    Jpn. J. Appl. Phys. 47 2 908-913.
  5. “Anomalously strong doping dependence of the maximum Josephson current in intrinsic Josephson junctions and inhomogeneous supercnducting state in Bi2Sr2CaCu2O8+d”,
    M. Suzuki, Y. Yamada, T. Hamatani, K. Anagawa, and T. Watanabe,
    Physica C 460-462  386 387.
  6. “Fabrication of small mesa structures of Bi2Sr2CaCu2O8+d intrinsic Josephson junctions using polyimide process: Improvement of current-voltage characteristics with a very small number of junctions”,
    R. Takemura, T. Kumano, M. Ohmaki, T. Watanabe, and M. Suzuki
    Jpn. J. Appl. Phys. 46 9A 5788 5791

top of this page