京都大学工学研究科融合光・電子科学の展望 高温超伝導体固有ジョセフソン接 合の物理と応用 -超伝導フェイゾニクス(PHASONICS)へ

掛谷 一弘 京都大学大学院工学研究科電子工学専攻 kakeya@kuee.kyoto-u.ac.jp

Integrated Function Engineering Lab. Dept. Electronics Sci. & Eng. Kyoto University

- 超伝導の基礎概念
- •高温超伝導体をはじめとする新奇超伝導体
- •高温超伝導体における固有ジョセフソン接合
- •固有ジョセフソン接合からのTHz波発振
- •巨視的量子トンネル現象
- 超伝導量子コンピュータの開発状況

超伝導の基礎概念

- Discovery and its background
- Basic properties of superconductors

「超伝導」の発見

1911年、オンネスによって発見された水銀(Hg)の抵抗変化. データは数ヶ月に渡る数回の測 定で取られた

"Kwik nagenoeg nul"

周期律表における超伝導元素

1 KNOWN SUPERCONDUCTIVE 1 H HA ELEMENTS 3 4 ELEMENTS IIIA IVA VA VIA 2 Li Be • BLUE = AT AMBIENT PRESSURE IIIA IVA VA VIA 2 Li Be • BLUE = AT AMBIENT PRESSURE IIIA IVA VA VIA 11 12 • GREEN = ONLY UNDER HIGH PRESSURE IIIA 14 15 16 1 3 Mg IIIB IVB VB VIB VII IB IB IB AI Si P S 4 VA VA	² He ¹⁰ - Ne 18
H IIA ELEMENTS IIIA IVA VA VIA 2 3 4 5 6 7 8 9 2 Li Be • BLUE = AT AMBIENT PRESSURE • B C N 0 11 12 • GREEN = ONLY UNDER HIGH PRESSURE • 13 14 15 16 1 3 Ma Mg IIIB IVB VB VIB VII IB IB B AI Si P Si 1 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 4 K Ca Sc Ti V Cr Ma Fa Ca Aa Sa 34 3	IA He 10 - Ne 18
2 3 4 • BLUE = AT AMBIENT PRESSURE 5 6 7 8 * 2 11 12 • BLUE = AT AMBIENT PRESSURE • B C N O 11 12 • GREEN = ONLY UNDER HIGH PRESSURE • I3 14 15 16 1 3 Na Mg IIB IVB VB VIB VII IB IB IB AI Si P S 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 C 4 K Ca Sc Ti K Ca Ma Ca Sc	10 Ne 18
2 Li Be ■ BLUE = AT AMBIENT PRESSURE B C N O 11 12 ■ GREEN = ONLY UNDER HIGH PRESSURE 13 14 15 16 1 3 Na Mg IIIB IVB VB VIIB	F Ne
11 12 • GREEN = ONLY UNDER HIGH PRESSURE 13 14 15 16 1 3 Na Mg IIIB IVB VB VIIB	18
³ Na Mg IIIB IVB VB VIB VIB — VII — IB IB AI Si P S ⁴ K Ca Sc Ti X Cr Mp Fa Ca Ni Cu Za Ca Ca Ac Sa	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 ⁴ K Ca Se Ti X Cr Mp Fo Co Ni Cu Za Ga do So	X Ar
T V Calsal Til V Cr Malsal Cal Nil Cul 7a Calsal tal Sal	36
	ir Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5	54
⁵ RD Sr Y Zr ND Mo Tc Ru Rh Pd Ag Cd In Sn SD Te	Xe
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 8	; 86
⁶ Cs Ba *La Hf Ta W Re Os Ir Pt Au Hg II Pb Bi Po	t Rn
87 88 89 104 105 106 107 108 109 110 111 112	
' Fr Ra +Ac Rf Ha 106 107 108 109 110 111 112 SUBERCONDUCTO	

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Се	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Но	Er	Tm	Υb	Lu
+ Actinide Series	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 F m	101 Md	102 No	103 Lr

超伝導転移温度更新の歴史

Bennd Matthias

B. Matthias

H. Hosono

J. Akimitsu

超伝導の特徴

- •完全導電性(R = 0)
 - 超伝導電流は10¹⁰⁰⁰年以上も減衰しない
- •完全反磁性(B = 0)
 - •マイスナー効果
- •磁束量子化
 - •磁束量子: h/2e
- ・ジョセフソン効果
 - 電圧と周波数の関係: 2eV = hf

磁束の量子化

 $\Phi_0 = \frac{h}{2e}$

F. London, 1950 第1種超伝導体 A. A. Abrikosov, 1957 第2種超伝導体

U. Essmann and H. Trauble Physics Letters 24A, 526 (1967)

B. D. Josephson, 1962

$$I = I_c \sin \varphi, V = \frac{\hbar}{\frac{2e}{dt}} \frac{d\varphi}{dt}$$
$$\varphi = \phi_1 - \phi_2 - \frac{2\pi}{\Phi_0} \int \mathbf{A} \cdot d\mathbf{s},$$

$$\frac{I_m(H)}{I_m(0)} = \left| \frac{\sin(\pi \Phi/\Phi_0)}{\pi \Phi/\Phi_0} \right|$$

Paterno and Nordman, 1978

page10

高温超伝導体における固有ジョセフソン接合

固有ジョセフソン接合

Crystal Structure of Bi₂Sr₂CaCu₂O_{8+d}

Kleiner et al., PRL 68, 2394 (1992) Sakai, Bodin, & Pedersen, JAP 73, 2411 1993 Koyama & Tachiki, PRB 54 16183 (1996)

固有ジョセフソン接合の特徴

Schlenga et al, 1998

固有ジョセフソン接合からの テラヘルツ発振

- Bi2212単結晶メサ構造からコヒーレントTHz波が放射
- 0.5THzで0.6mWの最大出力
- メサ形状により、偏光を制御できる

THz waves

By Mark Fischetti from Scientific American, Aug. 2011

Sources of THz wave

- Pulse generation with femtosecond laser
 - Photoconductive antenna
 - Semiconductor crystal
- CW generation from solid state devices
 - Quantum cascade laser
 - Resonance tunneling diode oscillators

高温超伝導THz光源の実証

K. Kadowaki *et al.*, Physica C 2008

16

U. Welp et al., Nature Photonics, 2013

12

Synchronization of Metronomes

http://youtu.be/DD7YDyF6dUk

Our interest

Is it possible to synchronize huge # of Josephson junctions?

Yes, we did it!

重要な特性

- 連続波
 - Minami et al, APL 95 232511 (2009)
- •最大出力: 0.6 mW
 - Benseman et al, APL 103 022602 (2013)
- 狭帯域: ~ 10 MHz
 - Li et al., PRB 86 060505 (2012)
- 周波数範囲: 0.2-1.6 THz
 - Kashiwagi et al, APL 106 092601 (2015).
- 動作温度< 84 K
 - Hao et al., PRApp. 3 (2015).

f_{IF} (GHz)

半導体THz光源との比較

IK and H. B. Wang, Supercond. Sci. Technol., **29**, 073001 (2016) doi:10.1088/0953-2048/29/7/073001

Mechanism

$\lambda/2$ Cavity resonance

$$\nu = \frac{c}{2nw}$$

AC Josephson

$$\nu = \frac{2ev}{h} = \frac{2eV/N}{h}$$

Intense THz emission is due to: Synchronization of Josephson plasma waves with a cavity mode.

Local temperature rise possibly induces the synchronization.

Circular polarization

Apps. Circular-polarized wave

- Wireless communications
- Circular dichroism spec.

Patch antenna theory: Truncations at corners of square antenna allow to generate Cpolarized waves.

Truncated mesa possibly generate C-polarized waves

Fabrication of truncated mesa

Patch antenna theory Condition for C-polarization

$$\frac{\Delta s}{S} = \frac{1}{4Q} = 0.025$$
$$Q \simeq Q_C = \frac{t}{\delta} \qquad \text{Thickness of antenna} \\ \text{Skin depth}$$

Polarization of rectangular masa

Polarization of notched mesa

Truncated vs rectangular

Truncated

Summary for THz emission

- The relevance of the T distribution to the emission intensity is demonstrated.
 - More intensive THz wave is emitted from less heated case.
 - The emission intensity increases by up to 20% with a decrease in the hot-spot size.
- Polarization of the emitted THz wave is investigated
 - Elliptically polarized wave is emitted from the truncated mesa structure.

固有ジョセフソン接合における 巨視的量子トンネル現象

- ジョセフソン接合における量子トンネルを電流電圧特性に観測
- 複数自由度の超伝導体のモデル
- 量子ビットへの応用も可能

RCSJ model of JJ

Thermal fluctuation

 $k_B T$

 $\omega_{p0} = \sqrt{2eI_c}/\hbar C$

Distribution of I_{sw} is a function of I_{c0} C, T (TA)

$$\Gamma_{TA} = a_t \frac{\omega_p}{2\pi} \exp\left(-\frac{\Delta U}{k_B T}\right)$$

Thermal escape

φ

$$U(\varphi)$$

Quantum tunneling

Superconducting phase qubit

φ

Length scale Inductive coupling: $\lambda \sim 100$ nm Capacitive coupling: $\mu \sim 1$ nm

Assumption

- Inter-JJ coupling enhance escape from the trapped state of a JJ when an adjacent JJ is in the running state.
- Its strength is varied by the thickness of SC electrode.

Crystal structures of three **BSCCOs** $Bi_2Sr_2Ca_2Cu_3O_{10}$ Bi₂Sr₂CaCu₂O₈ Bi₂Sr₂CuO₆ 0.6 nm 0.3 nm _ _____ 25 4-÷ 4-

Measurement setup

Bi2223 1st and 2nd SPD

MQT regime in Bi2212 and Bi2223

Results summary

	<i>T</i> * (Exp.)	<i>T</i> _{cr} (SJ model)	<i>T[*]/T</i> _{cr}
Bi2201 1 st	0.6 K	0.35 K	1.7
Bi2201 2 nd	2.0 K	0.30 K	6.7
Bi2212 1 st	2.0 K	0.72 K	2.8
Bi2212 2 nd	10 K	0.95 K	11
Bi2223 1 st	2.0 K	0.55 K	3.6
Bi2223 2 nd	2.0 K	0.59 K	3.4

 $T_{2nd}^{*}/T_{cr} > 5$ in Bi2201, Bi2212

Coupled quantum tunneling

Summary for MQT

- •3種のBSCCOについてMQTを観測した
 - ・量子領域における第2スイッチの増加は、*t* < 0.3
 <p>nmの固有接合に共通の現象
 - CuO₂ 層における電荷中性の破れに由来(電荷結 合)
 - 固有接合系は、複数の秩序パラメタが相互作用するモデル

超伝導量子コンピュータの開 発

- 機械学習から人工知能へ
- D-Wave, Google, IBMなどがハードウェア開発
- 巨大国家プロジェクトが続々スタート、日本は•••

世界初の商用量子計算機D-Wave

経路、情報伝達、投資の最適化

量子アニーリングにより組み合わせ最適化問題を解く。 D-Wave One (128 qubits): 2011年 D-Wave Two (512 qubits): 2013年 D-Wave 2X (1024 qubits): 2015年

D-waveのテクノロジー

希釈冷凍機によって12 mKまで冷やされた超伝導デバイス

D-waveウェブサイトより

D-waveの超伝導回路(SQUID)

最新のD-wave 2X (1024 qubits) では、128,000個のジョセフソン接合

量子アニーリングとは?

量子トンネルを取り入れた最適化問題の解法として、東エ大の西森らが1998年に提案

T. Kadowaki and H. Nishimori, Phys. Rev. E58 (1998) 5355.

四株 労協教授のリイト <u>nup://www.stat.pnys.utecn.ac.jp/~nishimon/</u>

最急降下法、シミュレーテッド・アニーリングと比較して、計算が高速化できる

量子計算機をめぐるここ数ヶ月の動き

- IBMが量子計算を誰もが実験できるクラウドサービスとして提供 (2016/05)
 - 5 qubitsの量子計算をwebサイトで提供: IBM Quantum Experience
- Googleが量子ゲート方式の計算機で量子アニーリングをシミュレート(2016/06)
 - "<u>Digitized adiabatic quantum computing with a superconducting circuit</u>" をNatureに発表
- <u>Googleの量子人工知能研究所</u>は、高機能の量子アニーリング装置"Quantum Annealer Ver. 2.0"の製造を開始(2016/06)
 - Adiabatic Quantum Computing Conference 2016, June 27-30, 2016, Google LA での発表
- 産総研・日立・理研などによる高速・低消費電力で処理するアニー リングマシンの開発がNEDOプロジェクトに採択(2016/07)

Summary of lecture

- 超伝導量子計算機は、すでに商用化されている
- 高温超伝導デバイスが一般に行き渡る日はすぐそこに来ている
 - テラヘルツ光源は小型スターリングクーラーで動作
- ・巨視的秩序パラメータの位相を操る「フェイゾニクス」の確立
 が必須である
 - スピントロニクスとの融合
- 固有ジョセフソン接合、テラヘルツ時間発展の研究は未開の
 沃野である
- ・超伝導フェイゾニクスは量子計算技術と融合して AI分野への発展が期待される

レポート課題

- ・超伝導デバイスについて、講義で紹介したものでないものを 挙げ、そのデバイスの超伝導に由来する特性を説明せよ
- 最適化問題の解法について調査し、それらの特徴を述べよ
- 量子計算機について、超伝導を用いない方式を挙げよ
- 講義の感想 意見 質問